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Abstract: 
Management programs aimed at reducing wildlife damage to row crops rely on information 
concerning the spatial nature of wildlife damage at local and landscape scales. In this study 
we explored spatial patterns of wildlife damage within individual corn and soybean fi elds by 
describing relationships between specifi c locations where wildlife damage was recorded and 
distances from such locations to various habitat types that presumably infl uenced animal 
abundance and movements in our study area. Using stratifi ed random sampling, we conducted 
depredation surveys of 100 corn fi elds and 60 soybean fi elds from May through October both 
in 2003 and 2004 and recorded the specifi c global positioning satellite (GPS) coordinates 
of wildlife damage to individual corn and soybean plants. We then generated random point 
locations in the same fi elds using a geographic information system (GIS) and evaluated 
whether damage point locations and random point locations differed with respect to distances 
to the nearest patches of forest, developed area, or grassland and shrubland habitats. For 
both crop types, damage point locations were signifi cantly closer to forest patches than were 
random point locations, but farther from developed areas than random point locations. Logistic 
regression analyses further indicated that distance to forest infl uenced the probability of wildlife 
damage within fi elds, although pseudo r2 values of the best models were low (0.15). Our 
results clearly indicated that fi eld portions that were nearest to forested habitats were more 
likely to suffer wildlife damage than fi eld portions farther from forested habitats. We suggest 
that targeted removals of depredating species, concentrated along crop-forest interfaces, may 
be an effective, cost-effective means of reducing corn and soybean damage in areas where 
wildlife damage is especially problematic. 
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Many agricultural producers complain  
of excessive and intolerable wildlife damage 
to their crops (Brown et al. 1978, Brown and 
Decker 1979, Conover 1998), and several 
wildlife species, especially white-tailed deer 
(Odocoileus virginianus) and raccoons (Procyon 
lotor) that regularly cause damage to fi eld crops, 
are abundant or increasing in much of the Mid-
west. For example, damage caused by white-

tailed deer to corn (Sperow 1985, Vecellio et  al. 
1994, Wywialowski 1996, Tzilkowski et al. 2002, 
Humberg et al. 2007) and soybeans (de Calesta 
and Schwendeman 1978, Tanner and  Dimmick 
1984, Humberg et al. 2007) has been well-
documented. Furthermore, corn can constitute   
up to 65% of the diet of raccoons during the 
late summer and fall (Rivest and Bergeron 
1981), and signifi cant damage to corn caused 
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by raccoons has been documented (Humberg et 
al. 2007).

Exclusion (i.e., fencing) is an eff ective tool 
to minimize damage caused by deer (Craven 
and Hygnstrom 1994) and raccoons (Boggess 
1994). However, exclusion is not a cost-eff ective 
means of reducing damage to large expanses 
of low-value crops, such as corn and soybeans 
(Conover 2002). Instead, wildlife damage in 
corn and soybean fi elds might be managed 
more eff ectively via regulated hunting, targeted 
removal of depredating species, or by altering 
the confi guration and composition of landscape 
elements in agricultural areas (Van Vuren 
and Smallwood 1996, Beasley 2005, Retamosa 
2006). To bett er implement and understand the 
eff ectiveness of such management strategies, 
detailed information is needed on the spatial na-
ture of wildlife damage at local and landscape 
scales. 

Previously, we described general patt erns of 
crop depredation by wildlife in northern Indiana 
(Humberg et al. 2007) and found that raccoons 
and white-tailed deer were primarily responsible 
for damage to corn, whereas white-tailed deer 
and woodchucks (Marmota monax) caused most 
damage to soybeans. We also noted temporal 
diff erences in patt erns of depredation between 
raccoons and white-tailed deer (Humberg et al. 
2007). In the same study area, Retamosa et al. 
(in press) demonstrated that severity of wildlife 
damage within corn and soybean fi elds was 
related to the composition and confi guration 
of habitat elements surrounding fi elds at a 
landscape scale. Specifi cally, Retamosa et al., 
(in press) found that landscape parameters 
associated with forest cover (i.e., percentage of 
forest cover, mean forest patch size, amount of 
wooded edge) were good predictors of wildlife 
damage to corn and soybeans on a fi eld-level 
basis. We also determined that the severity of 
raccoon damage to corn is positively correlated 
with raccoon abundance in adjacent woodlots (J. 
C. Beasley, unpublished data). Thus, the timing 
and extent of wildlife damage to fi eld crops in the 
Midwest appears to be infl uenced by local and 
landscape-level processes. However, we believe 
that a more thorough understanding of crop 
damage by wildlife can be gained by evaluating 
spatial aspects of depredation at a fi ner scale.

Here, we extend our previous work on wildlife 

damage in corn and soybean fi elds to explore the 
spatial patt erns of crop damage within fi elds. 
To that end, we describe relationships between 
specifi c locations where wildlife damage was 
recorded within fi elds and the distances from 
such locations to various habitat types that 
infl uence animal abundance and movements in 
our study area.

Study area
Our 1,165-km2 study area is located in the 

Upper Wabash River Basin (UWB) in northcen-
tral Indiana, USA, encompassing portions of 
Grant, Huntington, Miami, and Wabash coun-
ties. The topography within the UWB is fl at, 
with gently rolling areas along river drainages 
at an average elevation of 243 m above sea level. 
Approximately 96% of the land area within the 
UWB was privately owned, 71% of which was 
in agricultural use. The primary agricultural 
crops in the UWB were corn and soybeans with 
small interspersed fi elds of hay and small grains. 
Only 13% of the UWB was forested, compared 
to an average of 19% statewide (Moore and 
Swihart 2005).  All contiguous forest tracts 
within the study area were confi ned to major 
drainages where frequent fl ooding or locally 
steep topography made the land unsuitable for 
crop production. The remaining native forests 
(predominantly oak [Quercus], hickory [Carya], 
and maple [Acer]) in the UWB were highly-
fragmented. Of the 35 23-km2 study areas within 
the UWB landscape analyzed by Moore and 
Swihart (2005), 75% of the forest patches were <5 
ha, 50% were <2 ha, and only 1% of patches were 
>100 ha. 

Methods
A Geographic Information System (GIS) 

was constructed to categorize land cover and 
classify individual agricultural fi elds by size 
and crop type (Retamosa et al., in press). For 
the present study, land cover was categorized 
as agricultural, forest, grassland-shrubland, de-
veloped area (usually a homestead), and other. 
A sample of fi elds representing the distribution 
of fi eld sizes in the study area was assigned to 1 
of 3 categories: <12 ha, 12–24 ha, or >24 ha, and 
were systematically surveyed from planting to 
harvest for evidence of wildlife damage to crops. 
We surveyed 82 fi elds (53 corn fi elds; 29 soybean 
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fi elds) in 2003 and 78 fi elds (47; 31) in 2004 for 
evidence of wildlife damage to crops. Surveyed 
corn fi elds averaged 21.3 ha (SD = 18.9) in size; 
soybean fi elds averaged 24.3 ha (SD = 19.2). Most 
fi elds were rectangular, although some fi elds had 
curvilinear borders adjacent to woodlots, roads,     
drainage ditches, and grassed waterways.

Aft er plant emergence, we established edge 
and interior transects in each fi eld using hand-
held Global Positioning Satellite (GPS) receivers 
and survey fl ags. All transects ran parallel with 
the fi elds’ row plantings, and transects continued 
through the end cross-rows to the ends of the 
fi elds. Two edge transects were established ran-
domly from 1–15 m of the edges of each fi eld, 
following curvatures of fi eld edges. Interior fi eld 
transects (two for < 12 ha, four for 12–24 ha, and 
six for > 24 ha fi elds) were spaced equidistantly 
within the remainder of each fi eld surveyed. 
Most fi elds had 4 defi nable edges, of which only 
the 2 edges that ran parallel to the entire fi eld 
row were surveyed (e.g., north-south orientation, 
east-west orientation). Some irregularly shaped 
fi elds had more than 4 edges. For fi elds with > 
4 edges, we surveyed the 2 major edges that ran 
parallel to entire fi eld planting orientation and 
any other edge of the same orientation that was 
greater than one-quarter the length of the fi eld in 
the direction being surveyed. Wildlife biologists 
(Indiana Department of Natural Resources and 
Purdue University Wildlife Extension), who 
were experienced in assessing various types 
of crop damage, trained our technicians on 
techniques to determine the specifi c wildlife 

species responsible for crop damage and on 
the developmental stages of corn and soybean 
plants. 

Technicians walked fi eld transects and sur-
veyed each fi eld approximately once per month 
from the time of plant emergence until harvest. 
Survey crews of 2 technicians each walked 
along transects and documented all plants that 
exhibited any sign of wildlife-caused damage 
visible from transects. For corn, and, to a lesser 
extent, soybeans, transect widths decreased as 
the plants grew and visually obstructed adjacent 
rows. The mean distance from transects to 
damage points was 1.6 m (SD = 2.19) during the 
vegetative stage of corn growth and 0.6 m (1.0) 
during the reproductive stage. For soybeans, 
mean distances from transects to damage 
points during vegetative and reproductive 
growth  stages were 0.93 (1.43) and 0.43 (1.30),  
respectively. At each plant damage location, 
crews recorded the number of plants damaged, 
wildlife species responsible, amount of leaf area 
damaged, percentage of seed damage, height 
of damage, growth stage of plant at the time 
of damage, and remaining yield (estimated 
percentage of yield remaining on each damaged 
plant). At locations where ≤20 plants were 
damaged, we collected data for each damaged 
plant; in areas where >20 plants were damaged, 
we collected data on 20 randomly-selected 
damaged plants. All documented damage was 
marked clearly with paint to avoid recounting 
during subsequent surveys. In addition to 
collecting plant damage characteristics, we re-
corded Universal Transverse Mercator (UTM) 
coordinates using hand-held GPS units at the 
epicenter of each location where we collected 
damage information (i. e., damage location). For 
the present study, we considered each damage 
location as an equal, independent observation, 
regardless of the number of plants damaged at 
that location.

We used the Animal Movement extension 
(Hooge and Eichenlaub 1997) in ArcView 3.3 
(Environmental Systems Research Institute,  
Inc.) to generate 2,156 random point locations 
along transects among all the sampled fi elds 
within the GIS, matching the total number of 
locations where wildlife damage was recorded in 
all fi elds surveyed. Random point locations were 
distributed among fi elds based on the number 
of transects sampled in each fi eld (a surrogate of 

Raccoons are major wildlife consumers of fi eld corn in 
northern Indiana.     (Photo by James Beasley)
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fi eld size). We pooled all point locations and used 
the type of point location (random or damage) as 
the dependent variable in subsequent analyses.

Ultimately, our goal was to describe which 
portions of fi elds (e.g., interior or edge) were most 
susceptible to wildlife damage and how adjacent 
habitat type infl uenced the severity of damage. 
Ostensibly, the most straightforward approach 
would have been to evaluate distances between 
point locations and fi eld edges of various types 
(e.g., agricultural, wooded, grassland-shrubland, 
or developed areas). However, we were unable to 
use simple distances from point locations to fi eld 
edges in our analyses because true fi eld edges 
oft en were ambiguous. Our criteria for marking 
fi eld boundaries included fi eld ownership, crop 
type planted, and planting date; therefore, our 
demarcation of fi elds likely did not mirror the 
perception of habitat boundaries to raccoons, 
white-tailed deer, and other wildlife that dam-
age crops. Instead, we evaluated distances from 
point locations (damage and random) to the 
nearest edges of habitat types (as defi ned by 
the GIS) that we hypothesized would infl uence 
animal movement and abundance (i.e., forest, 
grassland-shrubland, and developed areas) 
without regard to fi eld boundaries. As such, any 
agricultural fi elds located adjacent to each other 
were treated as a single fi eld in the analyses. 

Distances from each damage location and 
random point to the nearest forest, grassland-
shrubland, and developed area were measured 
within the GIS using ArcView 3.3. Because 
the data were not normally distributed, we 
used nonparametric Mann-Whitney U tests to 
examine diff erences in rankings of distances 
between damage point locations and random 
point locations to each of the predictor variables 
(distance to nearest patch of forest, distance to 
nearest grassland-shrubland, and distance to 
nearest developed area) within each crop type. 
We conducted binary logistic regression analyses 
(Norušis 1999) to further examine relationships 
between point location type (damage or random) 
and the 3 continuous predictor variables. We 
evaluated all possible models using the 3 
predictor variables with the Akaike Information 
Criterion (AIC; Akaike 1973). AIC values are 
useful for identifying the most parsimonious 
models that accurately predict the response 
variable (Burnham and Anderson 2002). We used 
SPSS version 10.0 (SPSS 1999) for all statistical 
analyses. 

Results
We documented a total of 582,515 depredation 

events (any damage caused by wildlife to a 
single plant) at 2,156 locations over the 2 grow-
ing seasons. We recorded wildlife damage in 149 
of 160 fi elds surveyed; there was no detectable 
wildlife damage in 5 corn fi elds and 6 soybean 
fi elds. Overall, soybean fi elds (509,415 damaged 
plants) were damaged more frequently than 
corn fi elds (73,100 damaged plants), despite a 
greater sampling eff ort in corn (n = 100) than 
in soybean fi elds (n = 60). During the 2 grow-
ing seasons we surveyed, white-tailed deer 
(61%) and woodchucks (38%) were most oft en 
responsible for damage to soybean plants; 
whereas raccoons (87%) and white-tailed deer 
(10%) were responsible for most damage to corn. 
(See Humberg et al. 2007 for a more detailed 
description of wildlife damage to surveyed 
fi elds.) 

In corn and soybean fi elds, damage point 
locations were closer to forest patches than 
random point locations (U = 641,317.0, P <0.001 
for corn; U = 183,995.5, P < 0.001 for soybeans; 
Table 1; Figure 1). However, the opposite trend 
emerged for distance to nearest developed area, 
where random point locations were closer to 
developed areas than damage point locations 
(U = 922,668.5, P = 0.016 for corn; U = 254,269.0, 
P < 0.001 for soybeans; Table 1). There was no 
diff erence between point location types for 
distance to grassland-shrubland habitats in 
corn fi elds, although for soybeans the diff erence 
was signifi cant (U = 266,035.5, P = 0.035), with 
nonrandom points being slightly farther from 
grassland-shrubland habitats than were actual 
damage locations (Table 1).

Logistic regression analyses further indicated 
that the distance to the forest infl uenced the 
probability of wildlife damage (Table 2). For corn 
and soybeans, the 2 best models (as indicated 
by AIC values) both included distance to forest 
as a predictor variable (Table 2). Distance to 
developed areas was included in 1 of the 2 best 
models for corn and both of the top 2 models 
for soybeans. The best models for both corn and 
soybeans consistently had Nagelkerke (pseudo) 
r2 values of 0.15, and correctly classifi ed 65–67% 
of point locations.
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Discussion
Our results clearly indicated that the pro-

bability of wildlife depredation within corn and 
soybean fi elds varied spatially. The distance 
from locations within fi elds to forested and de-
veloped habitats, and by extension, to varying 
abundances of wildlife that damage crops, con-
tributed to the probability of wildlife damage. 
Certainly, factors other than distance to various 
habitat types infl uence the probability of wildlife 
damage within fi elds, including availability and 
variety of alternative food sources for wildlife, 
extant management programs, and landscape-
level habitat features (e.g., juxtaposition of sur-
rounding habitats). The importance of other 
factors was made evident by the low pseudo r2 
values (0.15) of the logistic models. Even so, our 
results strongly suggested that fi eld portions 
nearest to forested habitats in particular were 
more likely to suff er wildlife damage than 
fi eld portions farther from forested habitats. 
Undoubtedly, the presence and confi guration 
of woodlots in agricultural landscapes are im-
portant predictors of wildlife damage to corn 
and soybeans (Braun 1996, Dĳ ak and Thompson 
2000, Henner et al. 2004, Beasley 2005, Retamosa 
et al. in press).

The importance of forested habitats in 
agricultural landscapes for wildlife that damage 
crops (e.g., white-tailed deer and raccoons) 
is unquestionable. However, in agricultural 
landscapes many nongame species (e.g., pas-
serine birds, bats, small mammals, reptiles, 
amphibians) also rely heavily on small forested 
habitats for food, cover, and breeding areas (e.g., 
Kolozsvary and Swihart 1999, Rosenblatt  et al. 
1999, Menzel et al. 2005). As such, we do not 
advocate removal of woodlots or components 

of woodlots, such as snags and woody debris, 
to alleviate crop damage in heavily agricul-
tural areas. Instead, we suggest that targeted 
removals of depredating species, concentrated 
along crop–forest interfaces, may be an eff ective, 
cost-eff ective means of reducing damage. Crop 

damage is directly related to deer density 
(Conover 1989, Vecellio et al. 1994, Braun 1996) 
and raccoon density (J. C. Beasley, unpublished 
data); therefore, management strategies that 
include decreasing densities of such species in 
woodlots adjacent to corn and soybean fi elds 
should help reduce crop damage, at least tem-
porarily (Yoder 2002). Future studies aimed 
at evaluating temporal aspects of population 

TABLE 1. Mean distances (± SE) in meters from point locations to nearest patches of forest (D Forest), 
developed area (D Developed) and grassland-shrubland (D Grass). Statistical signifi cance between 
point location types (damage or random) for the 3 distance measurements are indicated separately for 
each fi eld type (* = P < 0.05; ** = P < 0.01). Although means are presented, Mann-Whitney U tests were 
used to evaluate statistical signifi cance. Data were gathered in 160 corn and soybean fi elds in northern 
Indiana in 2003 and 2004.

Point type n D Forest D Developed D Grass

Corn Damage 1480 **122.57 ± 3.49  *234.98 ± 4.16  79.30 ± 1.91

Random 1316 **204.75 ± 4.50  *218.91 ± 4.15  78.87 ± 1.97

Soybean Damage   676 **144.88 ± 5.99 **219.90 ± 5.25 *67.26 ± 2.66
Random   840 **241.60 ± 6.42 **197.86 ± 4.80 *71.03 ± 2.28

FIGURE 1. Locations of wildlife damage in corn and 
soybean fi elds usually were found nearer to forested 
habitats than were random points. Plots depict the 
median (thick horizontal line), interquartile range 
(box), and outliers (vertical bars).
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reductions and movements among landscape 
elements in agricultural landscapes should 
prove benefi cial. 

Our model results were very similar for both 
corn and soybean fi elds. The best logistic models 
(as indicated by AIC values) included distance 
to forest and distance to developed areas as 
predictor variables, and all had pseudo r2 values 
of 0.15. Retamosa et al. (in press) likewise found 
that many of the same local and landscape 
variables were important in predicting damage 
to both corn and soybeans on a fi eld-level basis. 
Even though in our study area raccoons were 
primarily responsible for damage to corn and 
white-tailed deer were primarily responsible for 
damage to soybeans (Humberg et al. 2007), both 
species are considered edge species (Wishart 
1984, Craven and Hygnstrom 1994, Dĳ ak and 
Thompson 2000, Kuehl and Clark 2002) and 
have similar habitat requirements. Thus, certain 
habitat conditions at a variety of spatial scales 
appear to infl uence the severity corn and soybean 
damage similarly (Retamosa et al., in press). 

Most wildlife damage issues can be managed 
eff ectively with an integrated program that 

may consist of fear-provoking stimuli, habitat 
alterations, and lethal reductions of wildlife 
populations (Conover 2002); protecting Mid-
western row crops from wildlife depredation 
is no exception. Ultimately, protecting corn 
and soybean crops may be accomplished most 
eff ectively by manipulating landscape ele-
ments (Landis et al. 2000, Retamosa et al., in 
press). However, we also suggest that targeted 
removals of raccoons and white-tailed deer 
may help alleviate crop damage in areas where 
depredation by these species is particularly 
problematic.
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